Title: | MEREC - Method Based on the Removal Effects of Criteria |
---|---|
Description: | Implementation of the MEthod based on the Removal Effects of Criteria - MEREC- a new objective weighting method for determining criteria weights for Multiple Criteria Decision Making problems, created by Mehdi Keshavarz-Ghorabaee (2021) <doi:10.3390/sym13040525>. Given a decision matrix, the function return the Merec´s weight vector and all intermediate matrix/vectors used to calculate it. |
Authors: | Lucas Sebastião de Paula [aut, cre]
|
Maintainer: | Lucas Sebastião de Paula <[email protected]> |
License: | GPL (>= 3) |
Version: | 0.1.1 |
Built: | 2025-01-29 06:09:43 UTC |
Source: | https://github.com/cran/rmerec |
Method based on the Removal Effects of Criteria - MEREC Implementation of the MEthod based on the Removal Effects of Criteria - MEREC More information about the method at https://doi.org/10.3390/sym13040525 More information about the implementation at https://github.com/lucassp/rmerec Given a decision matrix, the function return the Merec weight´s vector.
merec_weights(data, alternatives, optimizations)
merec_weights(data, alternatives, optimizations)
data |
A numeric data matrix in the format of a DECISION MATRIX, columns are the criteria, rows are the alternatives |
alternatives |
A character vector with the identification of alternatives |
optimizations |
A character vector with definition of minimization or maximization for each criterion, expected 'min' or 'max' only |
A numeric vector with MEREC Weights (wj) and all matrix/vectors used to calculate it
alternatives <- c("A1", "A2", "A3", "A4", "A5") optimizations <- c("max", "max", "min", "min") data <- matrix(c( c(450, 10, 100, 220, 5), # criterion 1 values c(8000, 9100, 8200, 9300, 8400), # criterion 2 values c(54, 2, 31, 1, 23), # criterion 3 values c(145, 160, 153, 162, 158) # criterion 4 values ), nrow=5, ncol=4) result <- merec_weights(data, alternatives, optimizations)
alternatives <- c("A1", "A2", "A3", "A4", "A5") optimizations <- c("max", "max", "min", "min") data <- matrix(c( c(450, 10, 100, 220, 5), # criterion 1 values c(8000, 9100, 8200, 9300, 8400), # criterion 2 values c(54, 2, 31, 1, 23), # criterion 3 values c(145, 160, 153, 162, 158) # criterion 4 values ), nrow=5, ncol=4) result <- merec_weights(data, alternatives, optimizations)